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Abstract

Users of parallel machines need to have a good grasp for how dif-
ferent communication patterns and styles affect the performance
of message-passing applications. LogGP is a simple performance
model that reflects the most important parameters required to esti-
mate the communication performance of parallel computers.The
message passing interface (MPI) standard provides new opportu-
nities for developing high performance parallel and distributed ap-
plications. In this paper, we use LogGP as a conceptual framework
for evaluating the performance of MPI communications on three
platforms: Cray-Research T3D, Convex Exemplar 1600SP, anda
network of workstations (NOW).

Our objective is to identify a performance model suitable for
MPI performance characterization and to compare the performance
of MPI communications on several platforms.
Keywords: LogP, MPI, LogGP, Parallel Processing, Workstations.

1 Introduction

Recent advances in computer and semiconductor technologies make
parallel systems widely applicable for solving real problems. The
complexity of designing efficient parallel applications and algo-
rithms requires that models be used at various levels of abstraction.

Several approaches to model the communication performance
of a multicomputer have been proposed in the literature [1, 3, 10].
LogP is a simple parallel machine model that reflects the mostim-
portant parameters required to estimate the real performance of par-
allel computers [10].LogGP [3] is an extension of LogP capturing
the increased network bandwidth for long messages.

The message passing interface (MPI) standard [16, 17] pro-
vides a flexible environment for developing high performance par-
allel applications. MPI is a very flexible communication layer pro-
viding several mechanisms for point-to-point and collective com-
munications. It provides an efficient standard to implementmessage-
passing applications on different platforms.

In MPI, it is often possible to express the same application
communication requirement in many different ways, using differ-
ent combination of MPI primitives, with different type of resource
demands. The performance implications are complex and not easy
to understand. Information about resource usage, communication
performance, and latency hiding opportunities are required to help
MPI programmers select appropriate communication mechanisms.

This paper presents several approaches to model the perfor-
mance of MPI point-to-point communications. First, we use the
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modeling the underlying protocol messages. The cost of protocol
messages is often small compared to the cost of user messages,
thus such simplification gives acceptable prediction in most of the
cases. Furthermore, a simple model is also advantageous because it
is platform independent, and can be used in performance compar-
isons between different platforms. In addition, exact information
about the underlying messaging protocols is often not available for
MPI programmers. We describe a set of communication bench-
marks and use them to extract the LogGP parameters on three plat-
forms: Cray Research T3D, Convex Exemplar 1600SP, and work-
station clusters.

Next, we present a methodology for how to model the underly-
ing protocols used, by decomposing the MPI primitives into low-
level non-blocking communication primitives. We show how to de-
rive the communication performance for several typical MPIcom-
munication protocols. Incorporating details about the implementa-
tion may be necessary for MPI communication primitive designers.

Finally, we describe how to model the performance of MPI
programs running on machines with two tiered organization such
as the Convex Exemplar 1600SP. This model exposes the perfor-
mance gap between inter-cluster and intra-cluster communications
in cluster of shared memory type of machines.

The remainder of this paper is organized as follows. In Section
2, the basic concepts and communication styles of MPI, the LogGP
model parameters, and the hardware platforms are introduced. In
Section 3, we describe the MPI specific model extensions to LogGP
and the extension for the two tiered architectures. In Section 4, we
present MPI communication performance comparisons for allthe
platforms. Section 5 concludes the paper.

2 Background

Message Passing Interface
The MPI standard was defined in a forum involving the active par-
ticipation of more than 40 different vendors and organizations. A
very important goal of MPI is to provide a widely portable andeffi-
cient programming library without sacrificing performance. Since
the release of the standards [16], several MPI implementations
have become publicly available: CHIMP from Edinburgh Paral-
lel Computing Center (EPCC) [2], University of Edinburgh; LAM
from Ohio Supercomputer Center [7]; MPICH from Argonne Na-
tional Laboratory [13]; and Unify from Mississippi State Univer-
sity [12]. All of these implementations have a similar performance
if compared on the same computing platform [18].

In the message-passing programming model, a program con-
sists of a set of processes, where each process performs an inde-
pendent computation. These processes communicate via a number
of communication channels. Point-to-point communicationis the
fundamental communication mode of any message passing mul-
ticomputer. This section gives a short introduction to the different
point-to-point communication primitives in MPI. A summaryof the
different communication styles is shown in 1. More information
about MPI communication styles can be found in [18].

MPI provides different send and receive types, with different
synchronization and resource usage semantics. The type of asend
operation can be blocking or non-blocking with the following modes:
buffered, standard, ready, and synchronous. Blocking in MPI typ-
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ically means blocking the current process until resources used for
the operation can be reutilized. A send operation is considered local
if the operation completes before a communication with a remote
process is initiated.

The behavior of the standard mode is not precisely defined in
the MPI standard. A popular interpretation is that the send com-
pletion be independent of the receiving process as long as there is
sufficient system buffering space; when this space is finished, send
completion can be delayed for a matching receive.

The buffered mode buffers the outgoing message when no match-
ing receive is posted. The operation is local even for the blocking
call. The buffer cannot be reutilized directly after the non-blocking
sends. A difference between the explicit buffered mode and the
standard mode (in a buffered implementation) is that in the case
of the buffered mode additional buffer space can be declaredvia a
special MPI function call. In a blocking buffered mode the sender
can essentially continue with the next operation after the message
is in the buffer.

The synchronous mode requires some handshaking between the
sender and the receiver, thus this operation is non-local. Comple-
tion of a blocking synchronous send means only that the receiver
has reached a certain point in its execution, and it is not a guarantee
for a completed communication.

The ready mode send is completed only when the matching re-
ceive is already posted. The behavior of this mode can be undefined
if a send operation precedes a matching receive. In the case of the
Cray T3D this mode is for example equivalent with the standard
mode. The rational behind the non-blocking modes is that com-
pletion of the operation can be checked later, thus overlapping of
communication with computation is possible. The implementation
of the same communication operation may vary in function of mes-
sage length and other factors, such as availability of resources [9].

Different protocols could be used to implement the send oper-
ation, and Figure 1 illustrates some of the typical protocols used
in MPI implementations [9]. The T (Transfer) and TA (Trans-
fer Acknowledge) protocols can be used when message header and
data can be accommodated within the protocol message. The RAT
(Request Acknowledge Transfer), and RTA (Request TransferAc-
knowledge) protocols are used for implementing the standard and
the synchronous modes when message data cannot be accommo-
dated within the protocol message.

SEND RECEIVE SEND RECEIVESEND RECEIVE SEND RECEIVE

ACK
ACK

M

M

PUT

GET

ACK

RRRM RM

ACK

R=Request, RM=Message accomodated in Request Envelope, ACK= Acknowledgement, M=Message

T TA RTA RAT

Protocols: T, TA, RTA, RAT

Figure 1: Different protocols used for implementing MPI sends.

LogGP Performance Metrics
The LogP [10] model addresses the performance of a parallel ma-
chine in terms of four parameters, as follows: (1)L = latency or
the upper bound on the time to transmit a message from its source
to destination, (2)o =overhead or the time period during which the
processor is busy sending or receiving a message, (3)g = gap or the
minimum time interval between consecutive sends and receives, (4)

P = the number of processors. The model also assumes a network
with a finite capacity, e.g. if a processor attempts to send a mes-
sage that would exceed the capacity of the network, the processor
stalls until the message can be sent. The model is asynchronous,
i.e., processors work asynchronously and the latency experienced
by any message is unpredictable, but limited by the upper boundL
parameter in the absence of stalls. The maximum number of mes-
sages in transmit from or to any processor is determined byL=g.
Although the model primarily reflects the performance of message-
passing systems, the authors claim its applicability for shared mem-
ory models based on distributed memory machines.

An extension of LogP for large messages is presented in [3],
and a new parameterG is introduced: theGap per byteor the time
per byte for long messages. The reciprocal ofG characterizes the
available per processor communication bandwidth for long mes-
sages.

LoGPC [5] is a new model where application specific parame-
ters are introduced to account for network and resource contention
effects. LogP is quantified for low-overhead local area networks in
[14]. The performance assessment of LogP for fast network inter-
faces is presented in [11]. The majority of performance measure-
ments for point-to-point MPI communications are based on mea-
suring the round-trip time or the average transfer time between two
processes. Benchmarks like the COMMS1 and COMMS2 in the
GENESIS suite [9] have been adapted for MPI performance evalu-
ation. The average transfer time is estimated by halving theaverage
round-trip time. In addition, end-to-end bandwidth is estimated by
dividing the message size by the total message latency.

The main difference in presenting the communication perfor-
mance in the context of LogGP is the separation of the software
overheads from the other aspects of the communication perfor-
mance.
Hardware Platforms
We compare the MPI communication performance of three plat-
forms: Cray-research T3D, Convex Exemplar 1600SP, and a clus-
ter of workstations. On the first two of these platforms, we use the
same CHIMP MPI implementation, and on the Convex Exemplar
we use MPICH.

The Cray T3D is a distributed memory multicomputer based on
a high performance three dimensional torus topology. It is based
on nodes with two independent processing elements, consisting of
a DEC Alpha 21064 processor with a frequency of 150 MHz and
64MB of RAM. The memory interface between the Alpha proces-
sor and the local memory involves Cray customized circuitrywhich
extends the local virtual address space to a global address space.
Each processor can directly read and write to any other processor
memory through the shared memory access library [8]. Cache co-
herence can be handled at the user’s discretion, the interconnect
interface hardware allows remote data entering a processor’s local
memory to invalidate the corresponding cache line. The costof
routing data between nodes is essentially negligible, two cycles per
node traversed and one extra clock cycle to turn the corner. The sin-
gle hop latency is 1-2 microseconds and the bandwidth is 120MB/s
for the remote memory put operation and 60MB/s for the remote
memory get operation.

The Convex Exemplar 1600SP used in this paper is a shared
memory MP system based on HP PA-RISC chip configured in up to
16 hypernodes, each having up to 8 processors, an I/O port, and up
to 2 gigabytes of physical memory. Hypernodes are interconnected
with 4 rings. The MPI layer used is Convex MPICH V1.0.12.1
and it is compatible with Argonne National Laboratory’s MPICH
V1.0.12. It can be programmed as a conventional shared memory
machine, or as a distributed memory message-passing machine, or
as a hybrid of both. The system we used is from the Swiss Center
for Scientific Computing and has two hypernodes, with a totalof
16 HP-PA 7200 CPUs.
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Operation Main type Mode Ends Buffer. Other

MPI Send Blocking Standard ? ? Dependent on implementation
MPI Ssend Blocking Synchronous Non-local No
MPI Rsend Blocking Ready Local No Matching receive must precede
MPI Bsend Blocking Buffered Local Yes May need MPIBuffer attach
MPI Isend Non-block Standard Local ? Need MPITest or MPIProbe
MPI Issend Non-block Synchronous Local No Need MPITest or MPIProbe
MPI Irsend Non-block Ready Local No Need MPITest or MPIProbe
MPI Ibsend Non-block Buffered Local Yes Need MPITest or MPIProbe

Table 1: Summary of MPI point-to-point send operations

The network of workstations used is mainly a cluster of SPARC
stations. These are 8 workstations of Sun 4/50 SPARC stationIPX
with 16 MB RAM running SunOS 4.1.3. The workstations are
connected by an ordinary 10Mbit/s Ethernet. Table 2 shows the
processor, memory, and the communication interface of the three
platforms.

3 Modeling MPI Performance

In this section we introduce different methods to model MPI com-
munication performance. First, we use the LogGP model directly
on MPI primitives, ignoring the underlying protocols (and thus the
extra protocol messages) in MPI. This approximation is advanta-
geous because it allow us to give first order approximation and
comparison between platforms without considering machineand
implementation specific details. It is also easy to use by MPIde-
velopers because the LogGP metrics can be derived in similarways
on all platforms.

An extension of this model captures the underlying protocols
used in MPI operations, applying LogGP to model the low-level
asynchronous protocol messages instead. Because communicating
short messages typically do not require extra protocol messages
this model often can be reduced to the simple model mentioned
above. Similarly, when using large messages the cost of extra pro-
tocol messages can be ignored. The disadvantage of this model is
that the information about the exact protocols in MPI implementa-
tions is hard to obtain. Incorporating these details makes sense in
models used by MPI designers.

Finally, we describe a new performance model for architectures
based on cluster of shared memory multiprocessors.

Note, that the performance results given in this paper are mainly
using the simple approach for the reasons described above. For the
Convex Exemplar we present the results based on the extension
designed for cluster of shared memory multiprocessors.

3.1 A Simple Approach

The goal of a performance model is to present an abstract viewof
the system removing unnecessary details. A model that is primarily
designed for MPI application programmers can be different from a
model targeted to MPI communication designers.

We believe that the LogGP model can directly model MPI prim-
itives, and that modeling the underlying protocols in MPI isnot
necessary if the model is targeted for application writers.Because
communicating short messages typically do not require extra pro-
tocol messages, there is no difference between the two models for
short messages. Similarly, when using large messages the cost of
extra protocol messages can be ignored compared to the user mes-
sage cost.

The only requirement for this approach is to distinguish be-
tween the send and receive overheads for different communication
styles as these overheads are very different.
Experimental Methodology
This section shows the experimental methodology used to extract

the LogGP performance parameters for MPI. In our experiments,
messages are exchanged between two processors. The receiving
processor returns the message back immediately to the sender. Both
the sends and the receives are executed after a barrier that first
synchronizes the two processes involved. Non-blocking commu-
nications were tested with the test for completion (MPI-test). For
buffered communication, MPI buffers were declared. Experiments
were performed for different message lengths and pairs of proces-
sors/workstations. They were repeated at least 600 times onall
platforms. The experiments have been repeated with the rootpro-
cessor of the barrier operation changed from the sender to the re-
ceiver, to eliminate the performance impact of the barrier operation
itself. The effects of instruction caching are eliminated by running
a couple of iterations of the the benchmark before measurements
are taken. The general structure of the pseudo-code is shownin
Figure 2.
The send overhead (Os):
Measuring the send overhead for local sends (all send types ex-
cept the synchronous) is done bytimer11 in the micro-benchmark.
The overhead of the synchronous blocking send is dependent on a
matching receive operation, thus both the send and receive are is-
sued after a barrier operation.
The receive overhead (Or):
Measuring the non-blocking receive overhead is done by measuring
the time around the receive operations. The results are obtained
with timer21. In the case of blocking receives we started both the
sends and receives after a barrier but we delayed the receiveto make
sure that the idle time (synchronization) delay is not included in the
receive overhead. The results we provide for the receive overhead
are determined by thetimer12 in the micro-benchmark.
The network latency: L
Measuring the exact value of the latency with MPI is rather dif-
ficult due to differences in implementations and underlyingproto-
cols used. The latency as defined in the LogP model is often hidden
in the software send and receive overheads. The latency parame-
ter can be used to estimate the number of MPI operations one can
place between the non-blocking sends and the test for completion
operations. In the followings we present a methodology to estimate
the network latency with MPI.

First, we estimated the time necessary for a receive operation
to be aware of a send after a blocking synchronous send was is-
sued on another processor (both started after a barrier). This time
can be used as an upper bound for a small message latency. It is
calculated by comparing the receive overhead (seetimer12) with
the receive time that also includes the wait time for the firstdata
or protocol message to arrive from the sender (seetimer21). As
the MPI blocking synchronous send is a non-local operation,we
assumed that the operation would start with a protocol request or
message transfer in all the implementations. In [19] a benchmark
implemented with the Alpha assembler is presented for the exact
measurement of communication rates on the Cray T3D. Another
possibility would be to use the shared memory library [8] formea-
suring network latency.

Figure 3 shows the software overheads and network latency
for a communication pattern using a blocking synchronous send-
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Platform Processor Memory/node Network Interface Other

CrayT3D Alpha 21064, 150MHz 64MB Cray custom, 300MB/s Torus
NOW Sun4/50SPARC 16MB Ethernet, 10Mb/s SUNOS 4.1.3

Convex HP-PA-RISC7200 64MB crossbar for 16 CPU in
intra-hypernode 2 hypern.

CTI rings for
inter-hypernodes

Table 2: Comparison of the three platforms

Processor1:
repeat for all types {

repeat 10 times { // eliminate instruction caching effects
Barrier
Send[type] to P2:
if (type is non-blocking) test_completion
Barrier
wait delta
Receive[type] from P2:
if (type is non-blocking) test_completion

}
repeat n times { // measure

Barrier
start timer11
Send[type] to P2:
stop timer11 => *send overhead*
if (type is non-blocking) test_completion
Barrier
wait delta // wait enough for message to arrive.
start timer12
Receive[type] from P2:
stop timer12 => *receive overhead*
if (type is non-blocking) test_completion

}

}

Processor 2:
repeat for all types {
repeat 10 times { //eliminate instruction caching effects

Barrier
Receive[type] from P1:
if (type is non-blocking) test_completion
Barrier
Send[type] to P1:
if (type is non-blocking) test_completion

}
repeat n times { // measure

Barrier
start timer21
Receive[type] from P1:
stop timer21 // if (type is blocking synchronous) timer 21

// measures the *receive overhead* plus *latency*
// for small messages.

if (type is non-blocking) test_completion
Barrier
start timer22
Send[type] to P1:
stop timer22
if (type is non-blocking) test_completion

}
}

Figure 2: Pseudo-code for point-to-point benchmarking
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receive pair implemented with the RTA protocol. The software
overheads and latency with the non-blocking synchronous send but
a blocking receive is shown in Figure 4. In the case of the block-
ing synchronous send, we can observe that the network latency is
completely overlapped with the send overheadOs. The reason for
presenting these figures is to illustrate the difference between the
blocking and non-blocking sends where communication costscan
be overlapped with useful computation. The number of messages
generated between the sender and receiver is dependent on the pro-
tocol used for the operation.

Os Or L
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Figure 3: Software overheads and latency with a blocking syn-
chronous send-receive pair implemented with the RTA protocol.
Note, that the network latency is part of the blocking send over-
head.
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Figure 4: Software overheads and latency with non-blockingsyn-
chronous send and blocking receive based on the RTA protocol.
This mode could be used for large messages to overlap the mes-
sage transfer time with useful computation.

The gap: g
The gap is the minimal time interval between consecutive transmis-
sions or receptions at a processor. It basically reflects theproces-
sor to network communication bandwidth. For fast, low-overhead
communication layers, such as Active Messages [4], the gap is
shown to be larger than the sum of the send and receive overheads.
MPI overheads for short messages are however so high, that mes-
sages could be injected directly after they are constructed. Thus,
the minimum distance between consecutive sends can be approxi-
mated with a send overhead.
Gap per byte (G):
TheG parameter can be estimated by measuring the time around
a blocking receive overhead, extracting the non-blocking receive
overhead.

An overview of the LogGP performance signature on Cray T3D
and NOW for the non-blocking standard and synchronous modesis
shown in table 3. The performance signature of the Convex Exem-
plar 1600SP is presented in section 3.3. A more detailed perfor-

mance comparison for various message lengths and blocking com-
munications is presented in section 4.

MPI L os or g G
Cray T3D 3.1 30-130(24-100) 15 - 80 - 0.04

NOW 124 1000-1100(1000-1100) 1000 - 0.2

Table 3: LogGP signature for the standard non-blocking modes
and synchronous non-blocking modes on Cray T3D and NOW (in�s). The numbers in the parenthesis are for the non-blocking syn-
chronous case. The overheads shown regard 16 and 10000 byte
messages. The gap parameterG corresponds to peak communica-
tion bandwidths.

3.2 MPI Performance by Decomposition

More details about implementations of MPI can be captured by
modeling the underlying low-level operations. We express the per-
formance of MPI by decomposing the MPI operations into ba-
sic non-blocking messaging operations similar to Active Messages
[4]. These short messages typically reflect the size of network input
and output queues. Additionally, extra protocol messages are used
to implement flow-control between the sender and the receiver. The
objective of this section is only to show the methodology of how to
model these low level details.

We denote withT protocols the time after which the sender can
continue with the execution of its next operation and withT protocols�r
the end to end message delivery time. If the two times are equal
then we only showT protocols�r .

TheT protocol is typically used for asynchronous short mes-
sages and thus the message delivery time is given in a similarway
as in LogP. T Ts = os (1)T Ts�r = os + L+ or (2)

TheTA protocol is equivalent to a synchronous short message
transfer and it can be decomposed into two asynchronous mes-
sages, each having a send and receive overhead component, and
a latency component.T TAs�r = 2os + 2L+ 2or (3)

TheRTA protocol can be decomposed into two short protocol
messages, and one large message with sizek bytes. As theRTA
is using a pulling model (we assume hardware support similarto
the one in Cray T3D) for the large message it has no send overhead
component. The two send and receive overhead components are
included because of theR andACK messages. The third latency
(L) component is accounting for the time required for the first byte
of theM message to traverse the network. The rest of the(k � 1)
bytes are pipelined and thus take(k � 1)G time.TRTAs�r = 2os + 2L+ or + (k � 1)G (4)TRTAs = 2os + 3L+ 2or + (k � 1)G (5)

The RAT protocol is using a push model for data transfer.
It has therefore an extra send overhead component compared toRTA. As the messageM is pushed into the destination memory,
we assume that no extra software processing is required for receiv-
ing it. Note, that we considered that the transfer rates of the pulling
and the pushing methods are equal. The model can be extended to
capture significantly different transfer rates.TRATs = 4os + 3L+ 2or + (k � 1)G (6)
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The end to end delivery time also includes the latency and there-
ceive overhead ofACK.TRATs�r = 4os + 4L+ 3or + (k � 1)G (7)

Note, that for large message sizes the cost of communicationis
dominated by the(k�1)G term, thus the cost of protocol messages
could be ignored.
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Figure 5: Buffered vs synchronous communications. The RAT pro-
tocol shown in the figure is used for example in the implementation
of the synchronous MPI send operation on Cray T3D.

3.3 MPI on Clusters of SMPs

LogGP was primarily designed for distributed memory machines
with message-passing communication layers.

Clusters of shared memory multiprocessors typically rely on
low cost shared memory based communications within hypernodes
and message-passing based inter-hypernode communications.

From figures 7 and 6, we observe that there is a factor of ten per-
formance gap between inter- and intra-hypernode message trans-
fers in the Convex Exemplar 1600SP. Similarly, the softwareover-
heads for intra-hypernode communication are much less thanthe
inter-hypernode ones because they are based on simple shared mem-
ory primitives. This section presents a performance model for two
tiered systems calledLoGHfsSPg to account for these performance
gaps.
In theLoGHfsSPg model, the choice of parameters reflects the two
kinds of inter-processor communication inTTAs:� intra-hypernode, based on a messaging mechanism imple-

mented withshared memory accesses� inter-hypernodes, based onmessagesand some kind of mes-
sage passing communication layer

We use the LogP latency model for inter-hypernode communi-
cation. We ignore the intra-hypernode latency as it is much smaller
than the inter-hypernode latency. We distinguish between the sendos and receiveor overheads for inter-hypernode communication,
and the the sendss and receivesr overheads for intra-hypernode
communications. These overheads are differ for various MPIcom-
munication styles. Our model for long messages assumes thatthere
is some hardware support available for efficient long message trans-
fer. We use separate parameters to model inter-hypernode transfers
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Figure 6: Comparison of inter and intra-hypernode standardnon-
blocking MPI send overheads on Convex. Variation of overheads
in function of message length is shown.
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Table 4:LoGHfsSPg signature for the Convex Exemplar with MPI
in �s. The overheads shown regard 100 and 10000 byte messages.
The gap parametersS andG correspond to peak inter-hypernode
and intra-hypernodes communication bandwidths.
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Platform L
Cray T3D 3.1

Convex Exemplar 4-10
NOW 124

Table 5: Network latencyL on NOW, Cray T3d and Convex Ex-
emplar (in microseconds).

and intra-hypernode transfers. We model the long messagegap per
byte for inter-hypernodeaccesses withG. We use theS parameter
for thegap per byte for intra-hypernodecommunications.

The end to end delivery time of a large (non-blocking) message
of sizek bytes (ignoring protocol messages) within a hypernode is
given by the following expression:Ts�r = ss + sr + (k � 1)S (8)

Note, that we account for software overheads both at the sender and
the receiver but assume that the first byte of the message takes no
time to reach the destination.

The end to end delivery time of a large message of sizek bytes
for inter-hypernode communication is:Ts�r = os + or + (k � 1)G+ L (9)

The performance metrics for the Convex Exemplar using MPI
are summarized in Table 4.

4 Performance Comparison

The network latency results obtained for the three platforms are
presented in Table 5.
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Figure 8: Send overheads in blocking and non-blocking syn-
chronous modes on Cray T3D and NOW. Note, that the blocking
synchronous mode is non-local. Variation in function of message
size is shown.

Comparison graphs for the software overheads are presentedin
Figures 8 to 11.

On the Cray T3D, the non-blocking send overheads show small
variations in function of message length. This is in line with the
assumptions made in the LogP model for considering the asyn-
chronous send and receive overheads as constant. The results ob-
tained for the standard non-blocking send are similar to those ob-
tained with the non-blocking buffered mode.
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Figure 9: Comparison of blocking buffered and synchronous MPI
send overheads. Note, that the blocking buffered mode is local,
having a smaller overhead for short messages. However, for larger
messages buffering becomes very expensive and the overheads are
comparable.
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an indication about overlapping chances at the sender.
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Figure 11: Comparison of blocking and nonblocking receive over-
heads. The difference between the two modes shows possible
communication overlapping for various message lengths if non-
blocking mode is used at the receiver.

On the NOW, the blocking synchronous mode for small mes-
sages is more expensive than the standard or buffered modes due
to larger network latency. As expected, we can see that the syn-
chronous mode is more advantageous in the case of very fast net-
works such as in the CrayT3D. The non-blocking send overheads
on the NOW show small variations, increasing by a factor of ten
between 1-100000 bytes. The results obtained show that these
overheads are larger by a factor of ten than those obtained for the
CrayT3D.

The blocking receive overheads on the NOW suggest good com-
munication/computation overlapping possibilities for messages larger
than 1000 bytes. On the CrayT3D, it is advantageous to use non-
blocking communication for messages larger than 500-1000 bytes
in the case of send operations, and 2000 bytes in the case of receive
operations.

Figures 12 and 13 show the comparison of the standard non-
blocking send overhead and the network bandwidth for long mes-
sages for all the three platforms.

On the Convex Exemplar both the overheads and the long mes-
sage gaps are significantly larger for the inter-hypernode than the
intra-hypernode case. The Convex Exemplar intra-hypernode over-
heads are the lowest, the inter-hypernode overheads are only slightly
larger than the CrayT3D overheads. Messages can be communi-
cated fastest within the nodes of Convex Exemplar hypernodes.

5 Conclusions

We expect MPI to be the high performance communication layeron
most massively parallel processors (MPPs) and NOW in the future.
In this paper, we used LogGP as a conceptual framework for evalu-
ating the performance of MPI communications on three platforms:
Cray-research T3D, Convex Exemplar 1600SP, and a network of
workstations. We have discussed how to model the performance
of MPI by incorporating more details about the platform and the
protocols used. We have developed a simple set of communication
benchmarks to extract the performance parameters and presented
detailed measurements of the differences in communicationperfor-
mance among the platforms. We found that modeling the perfor-
mance gap between inter-cluster and intra-cluster message-passing
is important. For the Convex Exemplar, the software overheads and
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Figure 12: Comparison of standard non-blocking send overheads
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message transfer rates for inter-cluster communication are factor of
ten larger than the inter-cluster ones. Our results show that the MPI
software overheads are very high and should be improved in or-
der to utilize the high speed bandwidth provided by the underlying
hardware.
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